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Abstract 

The basis of crystal physics, namely the classification 
of tensors by rank and according to parity (i.e. polar or 
axial), is closely examined and found to be funda- 
mentally deficient. An appreciation of the importance 
of a pre-metrical approach that stresses the role of 
invariant objects leads to a superior description in 
terms of differential forms. Rank is then replaced by the 
degree of the form and parity is replaced by a 
distinction between inner and outer orientation. It is 
shown how these factors can be used to predict the 
behaviour of physical properties under active in- 
version, which is then the operation of fundamental 
importance. 

1. Introduction 

Crystal physics classifies tensors by rank and accord- 
ing to parity, that is according to whether they are 
polar or axial. Conventionally, this last distinction is 
associated (Nye, 1960; Birss, 1966) with behaviour 
under coordinate inversion (a conclusion that will be 
disturbed in what follows) but the important point, for 
the moment, is that some such distinction must be 
made if the forms of property tensors are to be 
predicted correctly for crystals of various symmetries. 
For example, the most obvious aspect of such 
predictions is the pattern of nullities generated by the 
rules contained in the following statement. 

(S 1) For centrosymmetrical crystals, polar property 
tensors of odd rank and axial property tensors 
of even rank vanish identically. 

Such rules embody the general philosophy on which 
crystal physics rests, namely that a property tensor can 
only be put into its simplest form after the rank and 
parity of the tensor have first been determined by 
inspection, which can, of course, only mean inspection 
of the experimental situation that the tensor is intended 
to describe. In practice, other information (e.g. derived 
reflexively or from balance equations) may be used in 
addition but this does not disturb the basic philosophy 
of crystal physics which is, in summary, that 

($2) the form of a property tensor is predicted as a 
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consequence of a prior attribution of both its 
rank and its parity by inspection of the cor- 
responding experimental situation. 

(This statement relates, of course, not to the eventual 
particularized form of the tensor appropriate to an 
individual crystal symmetry but to the initial form 
before such particularization has been considered.) 

Logically, however, it should be noted that there may 
be consistency problems if there is any question of 
using a procedure that alters the rank of a tensor from 
odd to even (or vice versa), because such an alteration 
would also involve a simultaneous change of parity, to 
be consistent with (S 1), and this would contradict the 
assumption in ($2) that rank and parity can be 
separately ~ determined by inspection. It is therefore 
necessary to enquire whether such procedures are used 
in tensor analysis and it is shown, in the next section, 
that, in fact, they are so used. 

2. Existing limitations 

2.1. Associated and other related tensors 

A convenient starting point is to consider an 
extension of a procedure, familiar in tensor analysis, in 
which a tensor is used to form associated tensors. It 
will be recalled that this is done by first defining a local 
inner product between base vectors, el, by specifying 
the corresponding six metrical coefficients g~j = e~. ej. 
These coefficients may then be used to transform an 

- 

arbitrary tensor - say a mixed tensor tJk, for example - 
into an associated tensor by the procedure, outlined 
below, of 'lowering affixes'. 

The arbitrary tensor is properly regarded as a set of 
correspondences between tables of numbers, e.g. the tjk, 
and the corresponding bases or coordinate systems 
used, provided that these correspondences exhibit the 
correct transformation behaviour, i.e. that indicated by 
the affixes. It may therefore be supposed that experi- 
mental measurements have revealed the existence of 
this correspondence but, equally, there exists another 
such correspondence in that the correspondence b e -  
tween the metrical coefficients gij and the e t is just the 
tensor g~j itself, the metrical tensor of the space. Tensor 
analysis therefore permits the metrical coefficients to be 
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used to raise and lower affixes in a way that is 
sufficiently exemplified by the equation 

g i j  tJkl = Sikl'  

in which the affixj is 'lowered' in the mixed tensor t{t to 
form the associated tensor Sik t (which is triply co- 
variant). 

Since the essence of a tensor is that it is a 
correspondence between a table of numbers and a basis 
(i.e. originally between tJkl and ei), the above procedure 
has automatically produced a second such corres- 
pondence (i.e. between sik t and ei), which clearly cannot 
be regarded as being a new tensor. However carefully 
the experimental arrangements are examined, if experi- 
ment defines one correspondence, then equally it 
defines the other. In consequence, it is often stated that 
it is merely a matter of convenience (in the presence of 
a metric) as to whether a tensor is expressed in 
contravariant, covariant or mixed form. Naturally, 
raising and lowering affixes does not alter the rank of 
the tensor but the further development outlined below 
does precisely that. 

Employing the g~j to raise and lower affixes does not, 
of course, exhaust the possibilities of using the g~j to 
modify the form of tensors, since it is also possible to 
consider the use of functions of the gij (such as the 
determinant, g = det gij, for example). In addition, 
tensor components can be labelled in other ways (a 
simple example being a cyclic relabelling of indices 
according to 12 --, 3, 23 ~ 1 and 31 --, 2). Taken 
together, these two possibilities allow any arbitrary 
tensor of first rank, ti, to be transformed into a tensor 
of second rank, tjk = G(t~), by means of a simple 
linear* transformation G that depends only on the gw 
Moreover, exactly the same argument now applies to 
this transformation as did to the transformation from 
tensor to associated tensor: since G depends only on 
the g~j then tjk clearly cannot be regarded as a new 
tensor and, if experiment defines the tensor t~, then 
equally it defines the tensor tjk. 

In an entirely similar way, any (antisymmetrical) 
tensor of second rank, tvq, can be transformed (by 
means of a simple linear transformation y that depends 
only on the g~j) into a tensor of first rank, t r = 7(tpq) 
and the same conclusion can be drawn about the 
interchangeability of the tensors tpq and t r. Indeed, G 
and y are but two examples of quite general trans- 
formations (Schouten, 1954), valid in n dimensions, 
that permit any antisymmetrical tensor of rank p to be 
replaced by an antisymmetrical tensor of rank n-p and 
again it is true that, if the experimental arrangements 

* Specifically,  tjk = G(tt) = Gjk ti, where G~k = g-l/2 gyl gkm Eilra 
and E um is the an t i symmet r ic  unit t ensor  (strictly speaking,  relat ive 
tensor  o f  weight + 1, so that ,  for  example  E t23 = - E  213 = + I for  a/ /  
coord ina te  systems).  Similarly,  for  the t r ans fo rma t ion  7, i n t roduced  
later,  t r = 7(tuq) = ? ~  tpq, where  )'Vrq = g-l/2 g,s EVqS" 

define the former, then equally they define the latter as 
well. Consequently, in three dimensions (n = 3), these 
procedures have exactly the feature envisaged in {} 1, 
that is they alter the rank of a tensor from odd to even 
(or vice versa) and so automatically produce in- 
consistencies between statements (S 1) and ($2). 

2.2. Discussion 

Clearly, the inconsistencies alluded to above cannot 
originate with experiment but must instead arise within 
the mathematical formalism that is selected to describe 
experimental conditions (i.e. within tensor analysis). A 
careful consideration of the procedures discussed in 
{} 2.1 reveals that the inconsistencies may be attributed 
to the way in which a metric can be used within a 
formalism that de-emphasizes the role of tensors as 
invariant objects. The two main features involved here 
are considered in more detail below. 

It has already been noted in {} 2.1 how a metric 
permits the transference from one tensor species to 
another, essentially by adding a second experimental 
input to the one provided directly by the experimental 
situation under inspection. Ideally, this dual experi- 
mental input should be avoided by working without a 
metric: more precisely, what is required is a math- 
ematical formulation which can eventually accommo- 
date a metric but in which, for the time being, no metric 
has been specified - in short, the formulation should be 
pre-metrical .  The second feature alluded to above 
concerns the role of an invariant object. 

Vector analysis emphasizes the role of an invariant  
object - the vector - and the task is essentially to find a 
physical state of affairs that can be represented by this 
invariant object; by contrast, tensor analysis, whilst 
recognising the existence of an invariant object - the 
tensor - regards it as an abstract object that is defined 
in terms of the behaviour of its components under 
changes of coordinates. This shift in emphasis from an 
invariant object to the components thereof (i.e. to 
tables of numbers that transform in a prescribed 
manner) means that, in physical situations, contact 
with experiment is automatically made via the com- 
ponents rather than the tensor itself (and this is, of 
course, implicitly recognised in tensor analysis in the 
practice of treating different types of tensor com- 
ponents as being essentially on the same footing). 
Ideally, however, this subordination of the role of an 
invariant object should be avoided and the question 
that naturally arises is whether there is available a 
mathematical formulation (suitable for the purpose) 
that, first, is pre-metrical in character and, secondly, 
stresses (rather than de-emphasizes) the role of an 
invariant object. The answer to this question is that a 
formulation with these two features was not available 
historically (i.e. when it was required for the satis- 
factory development of crystal physics) but that it is 
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now available and is embodied in the calculus of 
differential forms. 

The principal objectives of crystal physics were laid 
down as a complete programme by Woldemar Voigt in 
his definitive treatise (Voigt, 1910) on that subject and 
it was he who modified Neumann's principle from its 
original form as a compatibility statement (that 
morphological symmetry must be reflected in physical 
properties) to the now familiar form of an invariance 
requirement (that property tensors are invariant under 
the symmetry group of the crystal). It is only 
comparatively recently that the calculus of differential 
forms - sometimes called exterior differential calculus - 
has been available in textbook presentations (Flanders, 
1963; Goldberg, 1963; Spivak, 1965; Lichnerowicz, 
1967; Hermann, 1973, 1977) and although it first came 
into prominence, between about 1945 and 1965, 
through a number of investigations in the field of 
differential geometry, in which connection particular 
mention should be made of the name of I~lie Cartan 
(1945). Historically, therefore, the requisite math- 
ematical formulation (i.e. the calculus of differential 
forms) was not available when the programme of 
crystal physics was being finalized by Voigt and, 
although the best formulation available at that time (i.e. 
tensor analysis) was used, this still left within the 
programme the inconsistencies noted at the end of 
§ 2.1. It will be shown in the next section how these 
inconsistencies can be removed with the aid of 
differential forms. 

3. Differential forms 

3.1. Mathemat&al  definitions 

In differential geometry, the ordinary three- 
dimensional space of everyday experience is character- 
ized by three principal properties which, when suitably 
formulated, lead to the concept of a differentiable 
manifold, M. The first, since the nearness of points 
must be meaningful, is topology: M must be a 
topological space (Porteous, 1969). Secondly, M must 
have an additional coordinatization structure (Her- 
mann, 1970), that is each point of M must have an 
immediate neighbourhood that is described by n 
coordinates (there are then no holes in M!). Thirdly, 
since differentiability must be well defined for real- 
valued functions, F ( M ) ,  on M (e.g. temperature or 
pressure), then the final requirement is for smoothness: 
coordinate systems in overlapping neighbourhoods 
must be related to each other (Whitney, 1957) by 
differentiable coordinate transformations (there are 
then no sharp edges or corners!). In this way, the 
formal definition (Choquet-Bruhat, Dewitt-Morette & 
Dillard-Bleick, 1977) of a differentiable manifold 
generalizes the concept of a differentiable curve or a 

surface in a way that makes no reference to a 
containing space, all necessary constructions being 
performed intrinsically from within the manifold. In the 
same way that a differentiable surface has a tangent 
plane at each point, so there is (Dodson & Poston, 
1977), at each point ~ of the manifold M, a tangent 
space, also of n dimensions, that is denoted by Tn(M, 0 
or, when the context is clear, simply by 7",. 

In modern textbooks (Hermann, 1973, 1977; 
Lichnerowicz, 1967; Goldberg, 1963; Bishop & Crit- 
tenden, 1964; Spivak, 1965; Flanders, 1963) the use of 
coordinates is eliminated altogether in defining dif- 
ferential forms and, in addition, a number of different 
definitions are possible which, although equivalent from 
a mathematical point of view, are not always equally 
suitable for physical applications. For example, an 
exterior differential p form may be defined as an 
element of order p of the exterior algebra T,, "A~p) 
constructed on the vector space of Pfaffian forms (i.e. 
the space T* of linear functionals on the tangent space 
7',). Equivalently (Lichnerowicz, 1967), it may be 
defined as an element of [T,,A~P)] *, that is a linear 
functional defined on the space of order p of the 
exterior algebra T,, A~p) constructed on T,. Finally, and 
most usefully in the present context, the rules embodied 
in the construction of an exterior algebra can be made 
explicit in the definition, so that an exterior differential 
p form is defined (Hermann, 1973) as a mapping from 
(Tn) p = T n x T,  × ...  x T n to F ( M )  that is multilinear 
and antisymmetrical in its arguments (i.e. in the 
elements of Tn). It will be seen, in § 3.2, that this 
concept can be much simplified when considering local 
conditions in three dimensions. It is, however, impor- 
tant to note at this stage that the above definitions do 
not involve the manifold being endowed with a metric, 
i.e. there is no necessity to define an inner product in 
the tangent space, T,, so that differential forms are 
defined in a way that is not only coordinate indepen- 
dent but is also metric independent. (Being coordinate 
independent, there is, of course, no place within this 
formulation for differences of behaviour under coordi- 
nate inversion.) 

3.2. Applicabili ty to f ields 

If a crystal is subjected to a physical influence (e.g. a 
magnetic field) which gives rise to a resultant physical 
effect (e.g. magnetic induction), then it is customary to 
distinguish both of these from the constitutive relation- 
ship connecting them by describing the influence and 
effect as f ields and the constitutive relationship as a 
property. Following its earlier use in differential 
geometry, the language of differential forms has 
increasingly been used (since about 1965) to describe 
physical fields of various types. For example, it is now 
customary, in textbook descriptions of electromag- 
netism (Lovelock & Rund, 1975; Thirring, 1978, 1979; 
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Hestenes, 1966; Riesz, 1958) and also in research 
publications (Sternberg, 1978; Israel, I970; Riesz, 
1947; Thirring & WaUner, 1978; Barut 1978), to 
describe the four electromagnetic field quantifies as 
exterior differential forms defined on a manifold of 
three (space) or four (space-time) dimensions. By 
restoring the invariant object, the differential form (i.e. 
a mapping), such an approach avoids the tautology 
of tensor analysis (in defining a tensor only in terms of 
the behaviour of its components). Tensors appear only 
when base vectors, e i, are introduced, whereupon the 
four electromagnetic field quantities are all represented 
by antisymmetrical absolute tensor fields that are singly 
or doubly covariant. 

That the suitability of a formulation in terms of 
differential forms is not confined to electromagnetism 
was established as a result of pioneering work carried 
out by Enzo Tonti in the early 1970's which culmin- 
ated in a definitive review article (Tonti, 1976) in which 
he examined the reasons why exterior differential forms 
arise more generally, i.e. within the formal structure of 
a wide range of physical theories. It turns out that the 
majority of situations of interest in crystal physics can 
be described in terms of differential forms* just as in 
electromagnetism. Moreover, for the present purpose, a 
further simplification can usefully be effected by 
considering local maps - that is maps that bear the 
same relationship to differential forms as tensors do to 
tensor fields and vectors do to vector fields. 

In crystal physics, local considerations dominate 
rather than global ones and it is often only necessary to 
consider the specification of physical conditions in the 
vicinity of a single point. The tangent spaces, T 3, can 
therefore be replaced by a single three-dimensional 
linear space, V, and exterior differential p forms can be 
replaced by local maps either from V A(p) or from V p to 
R. The latter alternative is more directly useful, simply 
because the specification of physical conditions in 
crystal physics always involves (Tonti, 1976) field 
quantities that are naturally referred to simple p- 
dimensional geometrical elements, such as, for exam- 
ple, lines, areas and volumes. An appreciation of the 
importance of numbers read off dials as pointer 
readings (r), when taken together with an insistence on 
precision where the labelling of maps is concerned, then 
leads naturally to the realization that a number of 
experiments define multilinear and antisymmetrical 
maps, of degree p, of the form 

tr: V p ~ R ; (u ... . .  z) --~'-"r, 

* Strictly speaking, the majority can be described in terms of 
scalar-valued exterior differential forms. The remainder (e.g. 
vector-valued differential forms) are dealt with by Tonti (1976) in 
the elegant language of fibre bundles (Steenrod, 1951). However, 
this is beyond the scope of the present article, in which attention is 
confined to scalar-valued forms (i.e. to cases in which an individual 
fibre is the one-dimensional vector space, R, of real numbers). 

where u .. . .  ,z are vectors, i.e. elements of the linear 
space V. (These are finite or infinitesimal depending on 
whether physical conditions are spatially uniform or 
non-uniform; the two situations are not distinguished 
notationally.) 

Thus, for example, using a search coil in the shape of 
a parallelogram to determine the magnetic flux, ~, 
through it establishes a multilinear map from the 
ordered pair (u, v) to qb where u and v are spatial 
vectors that coincide with two adjacent sides of the (u, 
v) parallelogram. The order of the pair is immediately 
determined by the sense of the electrical connections to 
the measuring instrument, so justifying the statement 
that the map is also antisymmetrical. When, in general, 
the experimental arrangements define p vectors u,..., z 
taken in a certain order, then the corresponding 
p-dimensional geometrical element is said to have been 
thereby equipped with an inner orientation. However, 
there exist other experiments in which the connection 
between inner orientation and the experimental 
arrangements is not so direct. 

For example, consider a specification of the number, 
I, of charged particles (e.g. electrons) passing, in unit 
time, through a (u, v) parallelogram. Now, the direction 
of progression through the parallelogram does not, of 
itself, order the vectors u and v but instead orders any 
line passing through the parallelogram. When, in 
general, a p-dimensional geometrical element is involved 
but the experimental arrangements define an inner 
orientation for a geometrical element of complementary 
dimension (3 - p )  having one point in common with the 
original element, then that original (p-dimensional) 
element is said to have been thereby equipped with an 
outer orientation. To pass from an outer to an inner 
orientation it is necessary to make a comparison with a 
reference set of three vectors that define a standard 
orientation or handedness (i.e. it does not suffice to 
consider the experimental arrangements alone). Only 
after this has been done do these experiments define 
multilinear and antisymmetrical maps, of degree p, of 
the form 

27 : V r ~ R ; (u ... . .  z)--w~r ', 

where r'  is referred to as a W quantity to distinguish it 
from the ordinary quantity r (for which the experi- 
mental arrangements order the vectors u,..., z uniquely 
without any need to use a reference set of vectors to 
pass from an outer to an inner orientation). This 
differentiation between ordinary and W quantities (i.e. 
between maps of type a and those of type S)  is, in fact, 
the only satisfactory way of distinguishing between two 
essentially different types of physical fields-a dis- 
tinction that is not crucial in considering fields in 
isolation but which becomes so in considering their 
interactions, i.e. in considering properties. 
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3.3. Applicability to properties 

Consider a linear physical property of a crystal that 
relates a physical field described by a map of type e or 
Z' and of degree p to another physical field described by 
a map of type a or £' and of degree q. Whilst p and q 
are together analogous, in a sense, to the tensor rank 
referred to in statement ($2) of § 1, the ordinary or W 
characters of the two physical fields are not together or 
separately analogous to parity, i.e. to even-ness or 
odd-ness under coordinate inversion. In fact, parity has 
now disappeared as being an irrelevant factor for the 
following reasons. As indicated in § 3.2, the difference 
between maps of type X and of type e is precisely one 
of use or non-use of a standard reference orientation. 
However, in progressing from a consideration of 
experimental arrangements to the mathematical formu- 
lation in terms of differential forms via the local maps 
of type e and X, there is at no stage any requirement to 
assume a metric or to use coordinates. Thus, since both 
theory and experiment are metric independent and 
coordinate independent, it would obviously be in- 
correct to build in a dependence upon coordinates by 
linking the standard reference orientiation to the 
orientation of a coordinate system: coordinates have 
nothing to do with nature but only with Man's choice of 
description! It is therefore necessary to stipulate that 
the reference set of three vectors that defines a standard 
orientation (or handedness) must be considered to be 
an object entirely unconnected with any specification of 
a set of base vectors for the linear space V. There is 
then seen to be no scope whatever for making 
predictions about the physical properties of a crystal on 
the basis of behaviour under coordinate inversion (i.e. 
passive inversion of the frame of reference). On the 
other hand, active inversion of the crystal (in the sense 
of replacing a crystal X by an otherwise identical 
enantiomorphic companion X) is very relevant and 
indeed a knowledge of the effect of active inversion 
holds out an immediate promise of predicting a pattern 
of nullities analogous to the one referred to in § 1 in 
discussing statement (S1). From what has been said 
above, it is therefore clear that the basic philosophy of 
crystal physics should be not ($2) but rather the 
analogous statement 

($3) The relationship between a property for X and 
the same property for J( is predicted as a 
consequence of a determination ofp  and q and a 
determination of the ordinary or W character of 
influence and effect by inspection of the cor- 
responding experimental situation. 

In seeking to establish the exact nature of this 
relationship it is important to note that the active 
operation X--,  k inevitably depends, in the last 
analysis, on some conceptual model of the crystal; it is, 
in this sense, less precisely defined than the passive 

operation but its use is nevertheless unavoidable, since 
the passive operation is without direct physical con- 
sequences. The model dependence of active operations 
can have important repercussions (Post, 1978)for the 
general case of, an arbitrary anti-identity operation [i.e. 
X ~ )?, with ()?) -- X] but the particular case of X --, ~" 
is much easier to deal with by virtue of two special 
simplifying factors. 

Firstly, active spatial inversion is a purely geo- 
metrical operation, whereas, more generally, X --, 
may involve physical changes (_e.g. charge reversal). 
Secondly, the operation X --, X does not require a 
metric or a basis for its definition; thus, not only are the 
fields metric independent and coordinate independent 
but so also is the anti-identity operation itself, which 
means that the only possible connection, consistent 
with (X) =- X, between a property for X and the same 

- 

property for X is a map, T, that is plus or minus the 
identity* map, i.e. T = o91 with co = _+ 1. This result is 
exactly what is needed to establish how o9 depends 
upon p, q and the ordinary or W character of the two 
physical fields. 

Since o9 can have only two discrete values, namely 
+ 1 or - 1 ,  it is reasonable to suppose, by analogy with 
(S 1), that it is only the odd-ness or even-ness ofp and q 
that is important and, therefore, more specifically, to 
assume that co depends upon the following four factors 

(i) the odd-ness or even-ness ofp 
(ii) the odd-ness or even-ness of q 

(iii) the o or X character of one field 
(iv) the a or Z character of the other field. 

Changes in these four factors generate 16 possible 
cases to each of which corresponds a particular value 
of 09. However, if one of these factors is changed whilst 
the other three remain unchanged, then either o9 
changes sign or it does not (no other possibilities being 
open) but the latter possibility can be ruled out as being 
contrary to the assumption that o9 depends upon the 
factors (i) to (iv). Sequential use of this result allows the 
16 values of o9 to be interrelated and thereby expressed 
in terms of one arbitrarily chosen value (denoted by 
coo) in accordance with a simple table (Table 1). a S  
indicates an effect of type o and an influence of type 27, 
and so on. It therefore remains only to evaluate o90 but, 

* This conclusion cannot be sustained when the anti-identity 
operation requires a metric for its definition, because it may then be 
possible to use the metric to decompose T uniquely into constituent 
parts. 

Table 1. Values o f  w in terms o f  o9 o 

a o  

o r  

z z  

ez 
or 
L'o 

(p + q) odd (p + q) even 

09 = 600  09  = - - 0 , )  0 
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before this is done, it is necessary to make one further 
comment. 

It should be noted that Table 1 does not reflect any 
inherent  distinction between influence and effect: if 
these are interchanged (together, of course, with p and 
q), then the value predicted for co is unchanged, which 
is fully justified* for within the crystal no trace remains 
of any distinction between influence and effect. 

3.4. Evaluat ion  o f  co o 

To evaluate coo, the simplest type of property to 
consider is one for which p = 1 and q = 0; such a 
situation arises when some scalar influence, ~0, pro- 
duces a map of type a that places a directed line 
segment (u) into correspondence with a number (r). 
Now consider a crystal (X)  that contains a preferred 
direction within it; this preferred direction will be 
reversed for X ~ X, so that the above map cannot be 
even under X --, X and the corresponding value of o) 
must therefore be - 1 .  A comparison with Table 1 
immediately reveals that this gives coo = - 1  

Alternatively, it is possible to consider a situation in 
which some scalar influence produces a map of type Z' 
that places a line segment with outer orientation into 
correspondence with a number. Now consider a crystal 
(X)  that contains within it a prefixed axis and a 
preferred direction of circulation around that axis; both 
remain unchanged for X --, X, so that the cor- 
responding co must therefore be + 1 and this implies, 
again, that coo = - 1. 

Properties of the above type (i.e. with p = 1 and q -- 
0) are sometimes referred to as spontaneous properties 
and they constitute a useful device by which co values 
may be deduced. To each non-spontaneous physical 
property there correspond two constituent spon- 
taneous properties, and a comparison of  Table 1 with 
the corresponding table for a spontaneous property 
reveals that the correct value of co for the non- 
spontaneous property can always be obtained by 
multiplying together the two values for the constituent 
properties. The use of the word 'device' refers to the 
fact that the above remains true even if one or both of 
the two constituent spontaneous properties does not 
exist: for the purpose of calculating the value of co 
appropriate to the non-spontaneous property, it is as i f  

all three effects co-existed, 

* If the number of physical fields exceeds two, as, for example, in 
the ease of a linear relationship between two influences and two 
effects, then the justification is not so immediately obvious, as it is 
necessary to examine the inversion of the whole map connecting all 
four fields rather than just the parts connecting one influence and 
effect. In general, it is necessary to consider a number of pairs of 
what Tonti (1976) calls variabili di configurazione and variabili di 
sorgente, that is configuration variables and variables pertaining to 
the source of change in configuration. 

4. Conclusions 

The description provided by crystal physics according 
to which tensors are classified by reference to rank and 
parity has been shown to be fundamentally deficient. A 
superior description is in terms of differential forms 
with rank having been replaced by the degree of  the 
form and parity having been replaced by whether inner 
or outer orientation is involved. What  is then important 
is not the behaviour of physical properties under 
passive inversion but the behaviour under active 
inversion, and Table 1 (with co o -- - 1 )  enables this to 
be predicted from a knowledge of the aforementioned 
factors. 
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Abstract 

The polarization ratio for a repeatedly reflected X-ray 
beam has been calculated, assuming the Darwin 
formulism, in the case where the diffracting planes of 
the crystals are parallel. It is shown that polarization 
ratios lie closer to unity than those obtained using the 
kinematic approximation. The integrated intensities and 
polarization ratios from a double-crystal spectrometer 
are discussed. The polarization ratio for a graphite 
monochromator has been measured experimentally and 
shown to be close to the value predicted by the Darwin 
theory and significantly different from the kinematic 
value. 

Introduction 

The degree of polarization which results from the 
scattering of an X-ray beam by a crystal depends on 
the polarization of the incident beam, the degree of 
perfection of the crystal and on the strength of 
interaction between the X-ray beam and the crystal, as 
well as the scattering angle. If the incident beam is 
unpolarized and the crystal is perfect, the polarization 
ratio, i.e. the ratio of the intensity scattered parallel to 
the diffraction plane to that scattered perpendicular to 
the diffraction plane, is Icos 201, where 0 is the Bragg 
angle. For an ideally mosaic crystal, to which the 
kinematic theory can be applied, the corresponding 
ratio will be cos220. However, for a real mosaic 
crystal, where there is a strong interaction between the 
incident beam and the crystal, the kinematic theory will 
not apply and this will be particularly true if the 
diffracting crystal planes have a large structure factor 
and the crystal itself is large. Such a situation occurs 
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when the crystal is being used as a monochromator or 
a focusing device and, in these cases, as has been 
pointed out by Jennings (1981), extinction theory 
applies. 

Lawrence (1982) has shown that in the case of 
pyrolytic graphite, a commonly used monochromating 
material diffracting a large intensity from the (002) 
planes, the scattering can be described by the Darwin 
formulism. The reflectivity, R, in the symmetrical Bragg 
case, assuming no transmitted beam, is given by 

O" + ,///y -- [((7 + t / y ) 2  __ 0.211/2 
R =  

t7 

tr is the reflectivity per unit length, ~, is the direction 
cosine of the incident and diffracted beams and g is the 
linear absorption coefficient. These are the symbols 
used by Weiss (1966). The reflectivity can be calculated 
separately for both polarizations, giving R ,, and R± and 
thus the polarization ratio of the diffracted beam, 
R,,/R±, is found. The polarization ratio is thus a 
function of the mosaic spread of the crystal and the 
polarization ratios calculated in this manner are always 
greater than cos 2 20. 

In this paper, the polarization factor of a repeatedly 
reflected X-ray beam is calculated and the measure- 
ment of the polarization ratio of a graphite crystal 
described. 

Repeatedly reflected beam 

The polarization factor for a repeatedly reflected beam 
has been studied by Vincent (1982). In the special case 
where the diffracting planes were parallel (p = 0 ° 
geometry), it was shown that, if the crystals were 
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